База Знаний: Функции Calc. Немного об истории комплексных чисел
Впервые, по-видимому, мнимые величины появились в известном труде «Великое искусство, или об алгебраических правилах» Кардано (1545 г.), который счёл их непригодными к употреблению. Пользу мнимых величин, в частности, при решении кубического уравнения, в так называемом неприводимом случае (когда вещественные корни многочлена выражаются через кубические корни из мнимых величин), впервые оценил Бомбелли (1572 г.). Он же дал некоторые простейшие правила действий с комплексными числами.
Выражения вида , появляющиеся при решении квадратных и кубических уравнений, стали называть «мнимыми» в XVI-XVII веках, однако даже для многих крупных учёных XVII века алгебраическая и геометрическая сущность мнимых величин представлялась неясной. Лейбниц, например, писал: «Дух Божий нашёл тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы»[1].
Долгое время было неясно, все ли операции над комплексными числами приводят к комплексным результатам, или, например, извлечение корня может привести к открытию какого-то нового типа чисел. Задача о выражении корней степени n из данного числа была решена в работах Муавра (1707 г.) и Котса (1722 г.).
Символ предложил Эйлер (1777 г., опубл. 1794 г.), взявший для этого первую букву слова imaginarius. Он же распространил все стандартные функции, включая логарифм, на комплексную область. Эйлер также высказал в 1751 году мысль об алгебраической замкнутости поля комплексных чисел. К такому же выводу пришёл Д’Аламбер (1747 г.), но первое строгое доказательство этого факта принадлежит Гауссу (1799 г.). Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году.
Геометрическое истолкование комплексных чисел и действий над ними появилось впервые в работе Весселя (англ.), (1799 г.). Первые шаги в этом направлении были сделаны Валлисом (Англия) в 1685 году. Современное геометрическое представление, иногда называемое «диаграммой Аргана», вошло в обиход после опубликования в 1806-м и 1814-м годах работы (Аргана (фр.)), повторявшей независимо выводы Весселя.
Арифметическая модель комплексных чисел как пар вещественных чисел была построена Гамильтоном (1837 г.); это доказало непротиворечивость их свойств. Гамильтон предложил и обобщение комплексных чисел — кватернионы, алгебра которых некоммутативна.
InfraOffice.pro 3.1.x
- ↑ Клайн М., Математика. Утрата определённости (Mathematics: The Loss of Certainty, 1980) / Пер. с англ. Ю. А. Данилова / Под ред. д-ра физ.-мат. наук, проф., с предисл. и примеч. И. М. Яглома / М.: Мир / 1984, 434 с., ил. С. 139.